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Warm dense matter spans bound and conduction electron
to quantum and classical free electron physics
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Physics issues amenable to laser-based experiments
abound in warm dense matter regime
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Several  operating regimes for preparing warm
dense matter using high energy lasers
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A variety of  transient transient x-ray techniques
have already been deployed
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Material strength inferred from radiographing
hydroinstability growth upon sample acceleration

Kalantar, Remington

High energy Radiography measures rx changes (expansion,
shock compression, hydroinstability growth)
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Both point projection and area backlighting
envisaged for high energy x-ray radiography

NIF HEPW Brightness in
photons/µm2/sr/100 ps gate scaled

from existing data
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0.1-1 eV

Spectrometer
Broadband
source

Spectral modulation frequency measures lattice d spacing
Envelope and broadening measures disorder = f ( Ti/TDebye(r) )

Yaakobi, Meyerhofer
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X-ray diffraction used to measure dynamic response
of crystal lattice to compression

0.1-1 eV

Kalantar, Wark

Spectral shift measures lattice d spacing, phase changes
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X-ray coherent scattering experiments are sensitive
to ion-ion structure factor and ion temperature

D. Riley et. al., PRL (2000)
Al, 1g/cc, 2.4 eV Peak angle = f(ni

1/3)

Ti = 0.2 eV << Te
to explain
correlated ion
behavior

K-resolved Scattering measures 
ion structure factor = f (Ti, G)
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X-ray source

X-ray scattering from free electrons (Thomson) for
measuring velocity distribution
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Spectrally-resolved Incoherent Scattering measures :

Free and weakly bound electron momentum distribution = f (Te. TFermi, I.P.)
Ratio of free/weakly bound / tightly bound electrons
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t = 0.5 ns t = 1.0 ns t = 1.5 ns

Be CH coated            
Au shield (50 mm)
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1mm Rh
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7 kJ; 1 < t < 2 ns

30 heater beams:
15 kJ; 0 < t < 1 ns

X-ray “Thomson’ scattering in warm
solid density matter

Gated HOPG spectrometer
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Thomson spectrum
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• Te broadening was predicted in
1928:  Chandrasekhar: 
“scattering will not be influenced
by ranges of temperatures
available in the laboratory”
Proc R.S. A 125, 37 (1929)

 S. H. Glenzer et al., Phys. Rev. Lett. 90, 175002 (2003).
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From the theoretical fit to the data:
Te = 53 eV and Zfree = 3.1 hence ne =
3.8 x 1023 cm-3
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A sensitivity analysis shows that
we can measure Te within ~15%

X-ray scattering provides accurate temperature
measurements in solid-density Be plasmas

Comparison of experimental data
and fits for various Te

X-ray scattering spectra provide
accurate data on Te and ne
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ne = 5x1017 cm-3

Te = 4.5 eV
a = 3.5
G = 0.005

ne = 2x1024 cm-3

Te = 14 eV
a = 3
G = 2

MD
Vlasov+HNC
FP

Theory

•XRTS experiment could
validate collisionality model
at high ne, variable G

Linnebur and Duderstadt (1973) Cauble and Boercker (1983)

Collisionally broadened plasma resonance for
cold plasmas is model sensitive

Collisionality, plasma wave behavior in
Fermi degenerate and strongly coupled
plasmas

10-300 eV
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Spectrally-resolved forward x-ray scatter can
test dense matter energy transport models
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Spectrally-resolved Collective Scattering measures:
Free electron density from plasmon shift
Ratio of Te/Ti from ratio of ion feature to plasmon
May distinguish between nei collisionality models



Oll /2-23-06 16

Soft x-ray laser used to demonstrate increased
opacity at increased density

E. Wolfrum et. al., J. Phys. B (2000)Al, 4 g/cc, ne = 3x1023 cc-1,
Te = 1 eV

Opacity increase20 nm X-ray laser transmission image

Stimulated or spontaneous X-ray line transmission measures opacity
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Characterization of Warm Dense Matter: EOS and
Opacity of shocked material at Omega/NIF

Shepherd, Ng, Heeter, Foord, Iglesias, Rogers, Springer

Absorption spectroscopy measures ionization state, opacity
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Spectral measurement of ionization state will help
differentiate between plasma EOS models

Shepherd, Ng, Heeter, Foord, Iglesias, Rogers, Springer
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A variety of  transient transient x-ray techniques
have already been deployed
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•Radiography
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•Diffraction
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